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Stationary Coverage of a Stochastic
Adsorption-Desorption Process with
Diffusional Relaxation
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We show that it is possible to derive the stationary coverage of an adsorption-
desorption process of dimers with diffusional relaxation with a very simple
ansatz for the stationary distribution of the process supplemented by a
hypothesis of global balance. Our approach is compared to the exact result and
we seek to understand its validity within an instance of the model.

1. INTRODUCTION

The use of master equations is one of the most promising techniques in the
study of nonequilibrium statistical systems, their success stemming both
from their nice mathematical properties and from their phenomenological
character, making them a modelling tool in a great variety of situations.

In order to set up the master equation for a model system, one is
asked to give the transition rates between the different possible configura-
tions of the system. Under rather weak conditions, namely that each con-
figuration must be reachable from every other, one can assert that as time
tends to infinity the probability distribution of configurations will tend, for
finite systems, to a unique nonzero stationary distribution. In the case
detailed balance holds among the rates, a condition that can be easily
verified by perusal of the Kolmogoroff's criterion(1) the matrix of the
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transition rates can be cast in the form DSD-1 with D diagonal and 5 sym-
metric, (2) and the system's stationary distribution will be an equilibrium
one such that we can assign to it an effective energy H = In Ps simply
related to the rates. When detailed balance does not hold, on the contrary,
the determination of the stationary distribution becomes considerably a
more involved task, its structure being in general almost completely
unknown. Albeit such a distribution will exist, and a number of techniques
have developed aiming at the evaluation, at least in an approximate
fashion, of an energy function also in these cases; noteworthy among these
is the correlation method.(3,4)

The purpose of this paper is to show how a very simple ansatz for the
stationary distribution plus a hypothesis of global balance can be used to
clarify some results for a reaction-diffusion process that was in vogue some
time ago.(5-7) The process consists of adsorption and desorption of dimers
together with asymmetric diffusion of monomers on a one-dimensional
lattice. The previously derived results for the process were obtained using
a Schrodinger-like description of the master equation that renders the
infinitesimal generator of the Markov semigroup a magnetic Hamiltonian
aspect, thus allowing for techniques first developed in a magnetic context
to be used in the stochastic context with equal profit.

The paper goes as follows. In Section 2 we derive the Schrodinger-like
form of the master equation in the special case where only two states per
site are present; we believe the derivation given there is clearer than the
ones usually encountered, though it is not properly a novelty. We also
define the model and state the results we are interest in. In Section 3 we
make our contribution to the understanding of the stationary coverage of
the model and in Section 4 we discuss our result in the light of previous
exact results obtained for this quantity.

2. THE TIME EVOLUTION OPERATOR

Let us begin with the master equation. We consider a one-dimensional
lattice A*=:Z of |A|=L sites, and attach to each site leA a random
variable a, taking values on <o = {— 1, +1}, the state space of the whole
lattice being given by Q = wA. If W(a', a) denotes the rate of transition
between the configurations a and a' (a-*a'\ u,a'eQ, and P(a, t) is the
probability of realization of a particular configuration a at instant t, we
write the master equation as
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Using the fact that in a one-dimensional lattice of two-state variables
\Q\ =2L= | { R ^ A } | and also that the only possible channel of collision
for a o, is <T/->CT;= —ah we write the transition rates most generally as

where by aR we mean the configuration which equals a except for the sites
in the region R, where af=—ar, reR, and the delta is a product of
Kronecker's deltas over the whole lattice. We then rewrite Eq. (1) as

We now explicitly introduce linear vector spaces in the description of
the structure of Eq. (3). To do this we turn w = { — 1, +1} into co = C2 and
CT into |<T> = ®/6yl |o-/>, the state space now being given by Q= (x) leyA co.
Taking an orthonormal basis { |CT>} for Q we write

for the generating vector of the probability densities P(a, t) = <CT | p ( t ) > . In
the space of the linear operators acting on Q we define XR and WR by their
actions

Multiplying Eq. (3) by |CT> and summing over Q, with the help of the
above defined operators we eventually arrive at

with

the infinitesimal generator of the Markov semigroup T( t) = exp( - Ht).
Equation (6) is in the desired Schrodinger-like form. If we use for the
matrices of the XR and WR operators the basis of Pauli matrices with a2

diagonal we readly see that
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where cr" stands for <r" = 1 ® ... <g> 1 <g) a* ® 1 ® ... ® 1, the cra being in the
rth position, a = x, y, z,

The process we are interested in is one in which pairs of particles
adsorb with rate s and desorb with rate e' from the lattice and which also
admits diffusion of monomers to the right with rate h and to the left with
rate h',(5-7) Identifying the presence of a particle in the site / with the eigen-
value + 1 of a] we obtain from Eqs. (7) and (8) the two-body evolution
operator

notice that the collision operator Xl, l+1 = ax
la*l+1 is common to all the

elementary processes of the model. The total evolution operator can be
obtained summing the two-body operator over the sites of the lattice
provided some boundary condition is given.

The operator in Eq. (9) is a very interesting and a very complicated
one. From the magnetic point of view it is an XXZ Heisenberg ferromagnet
with both XYand Dzyaloshinskii-Moriya (DM) in-plane interactions with
pure imaginary couplings, plus an external field and, for open boundary
conditions, a surface term. We can see, developing the products in (9), that
the coupling in the XY term is associated to the difference of the adsorp-
tion and desorption rates, while that in the DM term is associated to the
asymmetry in the diffusion. It is interesting to note that an asymmetric dif-
fusion breaks the chiral symmetry that the system would have otherwise,
and that this reflects in the DM term (ffl x <r l + 1 ) . ez, that just does exactly
the same thing.

With periodic boundary conditions the total operator resulting from
Eq. (9) have been exactly solved for a number of choices of the rates(5-7)

For example, for e = &•' = h = h' it reduces to the Ising model diagonal in the
a* representation, and for e = E' + h = h' it can be cast, after a rotation over
the bipartite lattice, to a ferromagnetic XXZ Hamiltonian in one of its
massive phases. In particular, for S + E' = h + h' the evolution operator
turns out to be quadratic in a± = 1 ( a x ± i a y ) and thus can be solved in
terms of free fermions.(5,6) It is to this instance of the model that we want
to adress our observations.

3. THE STATIONARY COVERAGE

It is possible to interpret domain walls in the Glauber kinetic Ising
model(8) as particles in a reaction-diffusion scenario(9) Although in the
original model domain walls diffuse symmetricaly, this can be relaxed to
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allow for biased diffusion without departing too much from the original
structure of the equations of the model,(5) though detailed balance and the
connection with the equilibrium distribution of the Ising model do not hold
in this case anymore. On the other hand the relationship between the
Glauber model and free fermions have been established already a long time
ago.(10) All this led to the conclusion that whenever e + e'=h + h' in the
model described in the last section, one can associate to it a free fermion
evolution operator that is also the evolution operator of an asymmetric
version of the Glauber model.

The above mentioned relantionships have made it possible to compute
the time-dependent density profile of the model in the free fermion case,
with the result that the stationary coverage is given by (5 ,6 )

We would like to rederive this result without recourse to the free fermion
constraint.

Guided by the duality between domain walls and particles and by the
product form of the equilibrium distribution of the Glauber model (since
< T

l°
:
l + 1~> T

l under the duality transformation) we ask whether we can
derive any results by postulating a stationary distribution of the form

where Z = (2 cosh J)L is a normalizing constant. In doing this we were par-
ticularly inspired by the results in ref. 4. From the master equation (3) we
see that Ps(a] will be stationary if

which is not the condition of detailed balance, since we are not requiring
each term of the sum to vanish, but only the whole sum to vanish instead.
Looking at the rate operator WR in Eq. (9) we see that we can write it as

with A = 1(e' + E + h + h'), B = 1(e' -e + h-h'), C = 1(e' -s-h + h') and
D = 1(s' +eE — h — h'); notice that under the free fermion condition D = 0,
corresponding to the vanishing of the "many-body" term in Eq. (9). Since
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we are dealing with a basis diagonal in the <r*'s we will treat them in
Eq. (13) as if they were c-numbers. From Eqs. (12) and (13) it follows that
P s ( a ) will be stationary if

and taking into account the translational invariance of the system we arrive
at the following condition on the coupling constant j,

that is,

and the stationary coverage per site reads

as in Eq. (10).
The above result is rather surprising. It states that in the stationary

regime mean-field analysis, as expressed by (11), holds exact. It also tells
us that despite the fact that when h = h' a current of particles establishes in
the substrate, in the stationary state the concentration of particles only
depends upon the adsorption-desorption rates. Similar results have been
obtained for the case h = h' = 0, but in this case the model shows microscopic
reversibility and a "Boltzmann weight analysis" can be performed(11) which
in the case being is not an a priori valid procedure.

4. CONCLUSIONS

The expressions for the concentration of particles in the stationary
state given by Eqs. (10) and (16), though identical, were obtained by very
different techniques. Our result is mean-field-like but anyway we were able,
with the aid of a hypothesis concerning global balance, to reproduce the
exact result.

It is well known that both the symmetric and asymmetric simple
exclusion processes have product form stationary distributions like that in



Eq. (11), i.e., they both have white noise as invariant measures, as is some-
times said. This however should not lessen one's surprise in having Ps(a)
as in Eq. (11) for the process we are dealing with in this paper since it has,
besides one particle exclusion, adsorption of dimers in which two adsorbed
particles together prevent further adsorption, and when all four rates that
define the model are non-null it is not possible by any amount of sublat-
tice-mapping funambulism to turn the model into an instance of a simple
exclusion process. Anyway, for £ = s' = 0 our analysis breaks down, for in
this case Eq. (15) becomes ill-defined. On the other hand, when h = h' = 0
but e^O^e ' the same result for ps holds,(5,11) and it thus appears that a
finite amount of adsorption-desorption contrives ps to be given by Eq. (16),
wich is indeed a curious result.

One possible explanation for this is that due to the similitude of the
model with the Glauber model through a site-bond transformation one
expects that in the particle scenario the expression given by Eq. ( 1 1 ) is a
reasonable guess. It should be mentioned however that the exact duality
demands h = h', which in our approach is not necessary.

One can naively say that the stationary coverage does not depend on
the asymmetry of diffusion due to the periodic boundary conditions: one
then simply performs a Galilei transformation l->l + (h — h ' ) t on the
whole lattice and follows the time dependencies on the stationary state on
the new reference frame, where the diffusion happens to be symmetrical
and the exact duality with the Glauber model is recovered. This procedure,
if plausible in some special circumstances, to date has been proved right
only for a special class of initial distributions, the completely random ones,
and in the free fermion point e + e' = h + h'.(7)

We would like to stress that we guessed the product form stationary
distribution Eq. (11), and it happened that it contained coupling constants
enough to allow for the derivation of Eq. (16), in the case only one coupling
constant J = J(e,s'). It could equally well have happened that other
couplings, say #<TClTl+1 with K = K(e, s', h, h'), would have been necessary
to derive useful results.

As a final remark we notice that the hypothesis of global balance and
its connection with periodic boundary conditions can be further exploited,
e.g., using open boundaries and adding the necessary currents of particles
at the ends so to satisfy the same global balance equations, with Ps(a]
possibly modified to account for the open boundaries.
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